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Collocation Methods for Nonlinear Volterra 
Integro-Differential Equations with Infinite Delay* 

By Hermann Brunner 

Abstract. In this paper we study the numerical solution of nonlinear Volterra integro- 
differential equations with infinite delay by spline collocation and related Runge-Kutta 
type methods. The kernel function in these equations is of the form k(t, 8, y(t), y(s)), 
with a representative example given by Volterra's population equation, where we have 
k(t, a, y(t), y(8)) = a(t -s) . G(y(t), y(8)) 

1. Introduction. This paper is concerned with the numerical solution of non- 
linear Volterra integro-differential equations (VIDE's) with infinite delay, 

(1.la) y'(t) = f (t, y(t)) + f k(t, s, y(t), y(s)) ds, t E I:= [0, T], 

where on (-oo, 0] the solution y is to agree with a given initial function k: 

(1.lb) y(t) = q$(t), -00 < t < 0. 

In many important applications the kernel function k in (1.la) is of the form 

(1.2) k(t, s, y, z) = a(t - s) . G(y, z), 

where the convolution part a is a smooth (nonpositive) function. We mention two 
important examples: 

(i) Volterra's population equation (cf. Volterra [19]-[21], Miller [11], [12, pp. 130- 
140], and Cushing [5]). Here, we have 

(1.3a) k(t, s, y, z) = a(t - s) y z, 

where typically 

(1.3b) a(t) =-(-ob-1 + ,yib2t) exp(-t/b) 

(b > 0, -to + 1 = 1, q > ao > 0). Moreover, 

(1.3c) f (t, y) = y * (ao-aly), with ao, a1 > 0. 

(ii) VIDE of polymer rheology (cf. Lodge et al. [9], and Markowich and Renardy 
[10]). In this case, the kernel function k is given by 

(1.4a) k(t, s, y, z) = a(t - s) (y3/Z2 _ z 
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572 HERMANN BRUNNER 

with 
r 

(1.4b) a(t) = SE -k exp(-Akt) 
k=1 

(1k, Ak >?0, 0 < A< 1). 
The existence and uniqueness of solutions to (1.la), (1.lb), or to the equivalent 

initial value problem 
t 

(1.5a) y'(t) = f(t, y(t)) + (Qy)(t) + f k(t, s, y(t), y(s)) ds, t E I, 

y(O) =O , 

where 

(1.5b) (Qy)(t):= f k(t,s,y(t), (s))ds, t E I, 

has been studied extensively in recent years. We refer in particular to the com- 
prehensive survey paper by Corduneanu and Lakshmikantham [4] and its extensive 
list of references; compare also, e.g., [11], [9], [8], [3], [22], and [18]. 

In view of later applications (see Section 4) we cite a specific result concerning 
Volterra's population equation, i.e., (1.la), (1.lb) with f and k given by (1.3c) and 
(1.3a), respectively. 

THEOREM 1. 1 (Miller [11]). Suppose that ao > 0, al > 0, and let a E C[0, oo) n 
L' [0, oo), with a(t) 0 0, satisfy 

a, -f a(s)I ds > 0. 

Then for any positive, continuous, bounded function 0(t), -oo < t < 0, the problem 
(1.la), (1.lb), with f and k given by (1.3c) and (1.3a), respectively, has a unique 
solution y E C' [0, oo). This solution satisfies y(t) > 0 for all t > 0, and we have 

lim. y (t) = aO/ (al,; a (s) ds) 

In the following we will always assume that the problem (1.la), (1.lb) possesses 
a unique solution y on the interval I. 

The systematic numerical treatment of VIDE's with infinite delay (or even the 
classical initial value problem for VIDE's whose kernel function k depends both on 
y(t) and y(s), with 0 < s < t) has received very little attention in the literature. 
Pouzet dedicated one part of his thesis [15] to the numerical solution of a higher- 
order version of the initial value problem (1.5a) (with (Qy)(t) _ 0: no delay): the 
given VIDE is rewritten as a system of second-kind Volterra integral equations, 
and this system is then solved by adapting the classical 4-stage, explicit Runge- 
Kutta method for ordinary differential equations. (Computer programs based on 
this approach may be found in [16].) However, this early approach does not seem 
to have been followed up. 

More r'cently, a certain class of VIDE's with infinite delay arising as model 
equations describing the stretching of polymeric liquids, i.e., (1.la) with kernel func- 
tion (1.4a), were solved by means of first-order implicit Euler type discretizations 
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(a special case of Radau II type discretization; cf. Section 3, (3.5)). This specific 
way of treating the problem was dictated by the particular qualitative behavior of 
the exact solution (see [13], [10]). 

The present paper is organized as follows. In Section 2 we introduce polynomial 
spline collocation methods for VIDE's with infinite delay and analyze their con- 
vergence properties. Section 3 deals with the numerical implementation of these 
methods: since the various integrals occurring in the underlying collocation equa- 
tion cannot, in general, be found analytically, they will have to be approximated 
by appropriate quadrature processes, leading to implicit methods of Runge-Kutta 
type. As we have already mentioned, Section 4 contains the application of these 
methods to Volterra's population equation. A number of open problems are dis- 
cussed in Section 5. 

2. Collocation Approximations in Continuous Spline Spaces. Let HN: 

0 = to < tl < < tN = T (N > 1) be a partition (mesh) of the given compact 
interval I := [0, T], and set on := [tn, t?+1], hn := tn+l-tn (n = 0,..., N-1), and 
h := max{hn: 0 < n < N - 1} (mesh diameter). Moreover, denote by lrm the set 
of all real polynomials of degree not exceeding m. The exact solution y of (1.5a), 
(1.5b) (referred to subsequently as (1.5)) will be approximated on I by an element 
of the space 

S70) (IN) := {u E C(I): ujn =: Un E Wrm (O < n < N-1)}, 

i.e., by a continuous polynomial spline function of degree m. Obviously, 

dim S(?) (N) = Nm + 1. 

This approximation u will be determined by collocation: if 

N-1 

(2.1a) X(IIN) := U Xn, 
n=O 

with 

(2.lb) Xn -{t = tnJ := tn + cjhn: 0 cl < < Cm < 1} 

is a given set of collocation points in I (based on the collocation parameters {cj}), 
then u is to satisfy (1.5) on this set X(HN): 

t 

(2.2a) u'(t) = f(t, u(t)) + (Qu)(t) + f k(t, s, u(t), u(s)) ds, t E X(lIN), 

with u(O) -= (O) and 

(2.2b) (Qu){t) :=j k(t, s, u(t3, 0(s)) ds. 

Note that if cl = 0 and cm=1 (i.e., tnl,m = tn,l = tn, n = 1, ..., N), if f and k 
are continuous on their respective domains, and if the collocation approximation u 
exists, then it satisfies 
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Since u' (the restriction of u' to the subinterval oan) is in lmrl, it can be expressed 
in the form 

m 
(2.3) U' (tn + vhn) = E Lk(v)Yn,k, 

k=1 

where Yn,k u'n(tn,k) and Lk(v) := ?lm 1k(V - cI)/(ck - cl). Hence, setting 

(2.4) ak(v) f Lk (z) dz (k = 1, ... , m), 

we obtain 
m 

(2.5) Un(tn + vhn) = Yn + hn * ak(v)Yn,k, v E [0, 1] 
k=1 

with Yn Un (tn) (= un -1(tn)) and yo = y(0) = 4(0). Using these representations 
in the collocation equation (2.2a), we are led to 

Ynj= f (tn,j, Unj) + (Qu) (tn,j) 

ci ~~~~m 
+hn k tn,jitn+vhn,Un,jYn h +hn a ak(V)Yn,k dv 

(2.6a) n-1 
k=1 

+ E hi |k jltnsjiti + vhi, Unj, Yi + hi -Ea k (V)Yi, k dv 
i=O k=1 

v +Z- fY(j )1 ... m;n = . . . IN(-)1), 

with 
m 

(2.6b) Unj Un(tn,j) = Yn + hn 'E aj,kYn,k (aj,k = ak(Cj)), 
k=1 

and 

(2.6c) (Qu)(tn,) = J k(tn,j, s, Uni 0(s)) ds. 

For each n = O, ... ,N - 1, (2.6a) represents a system of nonlinear equations in 
Rm . Once the vectors Yn (Y1 .Yn,m)T (0 < n < N - 1) are known, the 
collocation solution u E S?) (fIN) is completely determined by (2.5). 

It is readily verified that, under appropriate assumptions on f, k, and q in (1.1) 
(assuring the existence of a unique solution y E C' [0, T]), the Contraction Mapping 
Theorem (cf. [14, Chapter 12]) guarantees that each of the systems (2.6a) has 
a unique solution Yn E Rm whenever the mesh diameter, h := max(n)f{hn}, is 
sufficiently small. 

In the following we shall focus on results dealing with the order of convergence of 
u at the mesh points ZN := {tn: 1 < n < N}. However, for the sake of comparison 
we also state a global convergence result; its proof, which we omit, relies on standard 
techniques (compare [1], [2, pp. 280-284]). In all subsequent theorems it is assumed 
that the partitions HN (N E N) are quasi-uniform, i.e., the quotients h/h, with 
h min{hn: 0 < n < N - 1}, are uniformly bounded: 

(2.7) h/h <?, NEN, 

for some constant -y > 1. If all partitions are uniform (hn = h = TN-' for all n) 
then, of course, -y = 1. Note that (2.7) implies Nh < '-T < cx. 
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THEOREM 2.1. Let f and k in (1.1) have continuous derivatives of order m and 
be such that, for given q E C(-oo, 0], the initial value problem (1.5a) has a unique 
solution y E Cm+(I). If u E Sm(f)JIN) denotes the collocation approximation 
defined by (2.6a), (2.5), then 

(2.8) Ily(r) - U(r) 11 := Sup{ly(r) (t) - u(r) (t)j: t E I} = O(N-m) (r = 0, 1) 

as N -+ oo, and this holds for any choice of the collocation points X(HN) given by 
(2.1b). 

While global convergence (on I) of order p = m occurs for any choice of m 
distinct collocation parameters {cj } in [0, 1], certain sets {cj } lead to a higher order 
of convergence, p* > m, at the mesh points ZN. This is an interesting property of 
polynomial spline collocation methods, since in many applications one is interested 
above all in obtaining highly accurate approximations to y at certain specific mesh 
points (e.g., at tN = T). 

In the subsequent analysis, the integrals 
I m 

(2.9) Jk :=j F (s -cj) ds, k E No, 
-j= 

will play a critical role. 

THEOREM 2.2. Let u E s2?)(HN) be the collocation approximation defined by 
(2.6a), (2.5), and assume that the collocation parameters {cj} have been chosen 
so that Jk = 0 for k = 0,...,d- 1, and Jd :# 0 for some d with 0 < d < m. 
If f and k in (1.1) have continuous derivatives of order m + d and are such that 
the initial value problem (1.5a) has, for given q E C(-oo, 0], a unique solution 
y E Cm+d+l (I), then 

(2.10) tax Iy(tn) - u(tn)j = (N-(m+d) 

while, in general, maxtnEzN Iy'(t") - u'(t")l = O(N-m) only. 
If, however, cm = 1, then 

(2.11) max |y(r)(tn) - u(r)(t )I = O(N-(m+d)) for r = 0, 1. 
tnEZN 

It is well known that the orthogonality conditions Jk = 0 (k = 0,... ,d - 1) 
imply that the degree of precision of the m-point interpolatory quadrature formula 
on [0, 1] based on the abscissas {cj } has degree of precision m + d - 1. Since this 
degree of precision cannot exceed the value 2m - 1, we always have d < m. The 
following corollary deals with some important special cases, and its proof relies on 
the above observation. 

COROLLARY 2. 1. Let f, k, and X be as in Theorem 2.2, and let the collocation 
approximation u E s4) (IIN) be defined by (2.6) and (2.5). 

(a) If the collocation parameters {cj} are the m Gauss(-Legendre) points for 
(0 1), i.e., the zeros of the shifted Legendre polynomial Pm(2s - 1), then Jk = 0 for 
k = O,.. m., m-1, with Jm 0, and hence 

(2.12) max jy(tn) - u(tn)I = O(N-2 
tnEZN 

while maxtnlEZN jY'(tn) - U(t)J = O(N-m) only. 
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(b) The optimal order in (2.11), m + d = 2m - 1, is attained if, and only if, the 
collocation parameters {cj} are the Radau II points, i.e., the zeros of Pm (2s - 1) - 
Pm.-1(2 - 1). 

(c) If the collocation approximation u is to lie in the smoother spline space 

Sk)(HN), then the optimal order in (2.11) is m + d = 2m - 2 (m > 2). The 
corresponding collocation parameters {cj} are the Lobatto points, i.e., the zeros of 
s(s - 1)P,' 1(2s - 1). 

If one selects equally spaced collocation parameters {cj }, then the corresponding 
interpolatory quadrature formulas are the Newton-Cotes formulas. In this case, 
d E {O, 1}, with d = 1 (and hence m + d = m + 1 in (2.11)) if, and only if, m is odd. 
The case- m = 3 (Simpson's Rule) coincides of course with the result contained in 
part (c) of Corollary 2.1. 

Proof of Theorem 2.2. The collocation equation (2.2a) can be written in the form 

t 

(2.13) u'(t) = f(t, u(t)) + (Qu)(t) - 6(t) + k(t, s, u(t), u(s)) ds, t E I, 

with u(O) = q(O), where the residual function b(t) vanishes at all collocation points: 

(2.14) 6(t) = 0 for all t E X(HN). 

The proof of Theorem 2.2 will be based on the fact that the collocation error, 
e(t-) := y(t) - u(t), may be viewed as the solution of a nonlinearly perturbed VIDE. 

LEMMA 2.1. Assume that f (t, y) and k(t, s, y, z) have continuous partial deriva- 
tives of order at least two with respect to y and z. Then the collocation error cor- 
responding to the collocation approximation u E ( (S N) satisfies the initial value 
problem 

(2.15) e'(t) = P(t)e(t) + 6(t) + f H(t, s)e(s) ds + (<1e)(t), t E I, 

e(O) 0, 

where 
rt 

P(t) := fy(t, y(t)) + f ky(t, s, y(t), y(s)) ds 

(with y(s) = +(s) for -oo < s < O), 

H (t,I s) :=kz (t, s, y (t), y (s)), 

and 

(?e) (t) := - {fyy(t) +f kyy(t, s, ,p(s)) ds 

(2.16) + ky(t, s,.,.) ds} e2 (t) 

rt 1 rt 

- f kyz(t, ., X)e(s) ds * e(t) - 1 kzz(t, s, , )e2(s) ds. 

Here, the unspecified arguments represent suitable functions of the form y - Ge 
(O < 0 < 1) arising in the remainder terms for Taylor's formula. 
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Proof. It follows from (2.13) and (1.5a) that e(t) satisfies the equation 

e'(t) = (f (t y(t)) - f(t, u(t))) + ((Qy) (t) - (Qu) (t)) + 6(t) 
ot 

+ f{k(t, s, y(t), y(s)) - k(t, s, u(t), u(s))} ds, t E I. 

Setting u = y - e and applying Taylor's formula, 

F(y -e) = F(y) -F'(y)e + WF"(y - e)e2, with O < 0 < 1, 

to the terms f(t,y(t) - e(t)), k(t,s,y(t) - e(t),0(s)) (in (Qu)(t)), and 
k(t, s, y(t) - e(t), y(s) - e(s)), the assertion of Lemma 2.1 is readily verified. O 

Equation (2.15) represents a nonlinearly perturbed linear VIDE, 

rt 

e'(t) = P(t)e(t) + 6(t) + f H(t, s)e(s) ds, t E I, 

where the perturbation term, (4e)(t), is given by (2.16). Nonlinear variation of 
parameter formulas for such VIDE's, as given in [17] (see also the list of references 
to earlier papers given therein), could be employed to obtain a representation for the 
solution e(t) of (2.15). Here, however, we will use a somewhat different approach, 
as indicated in the following lemma. 

LEMMA 2.2 (Grossman and Miller [7]). Let R(t,s), 0 < s < t < T, denote 
the solution of the resolvent equation associated with the linear part of the VIDE 
(2.15), 

a3R0(t,s) - -R(t, s)P(s) - R(t, v)H(v, s) dv, 
ds98 

satisfying R(t, t) = 1 for all t E I. Then e(t) is a solution of (2.15) if, and only if, 
it satisfies the equation 

r.t rt 
e(t) = R(t,O)e(O) + J R(t, s)6(s) ds + ] R(t, s) ((De)(s) ds, t E I. 

Since the collocation error is subject to the initial condition e(O) = 0, it solves 
the equation 

rt rt 

(2.17) e(t)= f R(t, s)6(s) ds + j R(t, s)(4?e)(s) ds, t E I. 

Note, incidentally, that the resolvent R(t, s) depends only on the given VIDE (1.1) 
(as indicated by the resolvent equation and the definition of the functions P(t) 
and H(t, s) in Lemma 2.1, its smoothness properties are governed by those of the 
given functions f, k, and q). The other terms on the right-hand side of (2.17), 6(s) 
and (4e).(s), reflect the global convergence properties of the collocation method (cf. 
Theorem 2.1): by (2.8), b(t) is uniformly bounded for all sufficiently small mesh 
diameters h > 0; moreover, by (2.13) it is piecewise smooth on I, provided f, k, 
and 0 are smooth functions. 

Now let t = t,n e ZN in (2.1-7), and rewrite the first term on its right-hand side 
as 

j R(t, s),(s) ds= fD(t+dn-1 , 
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where we have set D (ti + vhi) := R(tn, ti + vhi)6(ti + vhi). Note that these 
integrands, by (2.14), vanish if v = cl (1 = 1,... , m). This observation suggests that 
we replace each of the integrals over [0,1] by the m-point interpolatory quadrature 
formula having the {cl} as abscissas: if En,i denotes the corresponding quadrature 
error, then 

I mm 

D,(ti + vhi) dv = wiDn(ti + clhi) + En,i = En,i (0 < < n < N). 

Thus, (2.17) at t = tn assumes the form 

n-1 tn 

e(tn) 2_ hiEn,i +] R(tn, s)(4e)(s) ds, tn E ZN. 
i=o 

This in turn implies 

(2.18) le(tn) I < hN max IEn,i I + Bo Ikell, 
(i,n) 

where the constant Bo is such that fo jR(t, s) I ds < Bo for all t E I, and where 
(be)(t) is defined by (2.16). Note that since the mesh sequence {HN} is assumed 
to be quasi-uniform (cf. (2.7)), we have Nh < -IT < oo. Consider first 114ejj: if the 
partial derivatives in (2.16) are bounded, and if the improper integral exists, then 
there is a constant Co so that 

IIDell = sup{ j(e)(t)j: t E I} < ColleII2. 

By Theorem 2.1, ljell < Clhm for all sufficiently small mesh diameters h > 0 and 
all choices of the collocation parameters {cj}. Hence, 

11jell = O(N 

since h < ^tTN-'. 
Consider now the quadrature errors Eni in (2.18). Since the corresponding 

quadrature formulas have degree of precision m + d -1 (recall (2.9) and the hypoth- 
esis in Theorem 2.2), it follows from Peano's Theorem (see, e.g., [6, pp. 285-292]) 
that 

E~ ,~< maxdm+d Dn(ti + vhi) [K()d, 
o<v<l dvm+d Jo 

where K(s) denotes the Peano kernel of the quadrature formula. If the given 
functions in (1.1) are sufficiently smooth, then the integrands Dn (ti + vhi) have the 
same degree of smoothness on [0,1] and we have 

dm+dDn(ti + vhi) m+d < 0< < N 
dvm+d 0 2hm , 

for some constant C2. Using the above estimates in (2.18) and recalling that d < mi 

we find 

je(tn)j = O(N- (m+d)) for all tn E ZN. 

This establishes (2.10) in Theorem 2.2. 
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In order to find an estimate for e'(tn), differentiate (2.17) with respect to t. By 
Lemma 2.2, the resolvent R(t, s) satisfies R(t, t) = 1 for all t E I; moreover, R(t, s) 

solves also the adjoint resolvent equation, 

(9t = R(t, s)P(t) + j H(t, v)R(v, s) dv, 0 < s < t < T, 

with R(s, s) = 1, thus ensuring the existence of the partial derivative Rt (t, s). Thus, 

rt rt 

e'(t) = 6(t) + (4e)(t) + j Rt (t, s)6(s) ds + j Rt (t, s) (be)(s) ds, 

t E I. From this, an upper bound for the values e'(tm) can be derived by an 
obvious modification of the above arguments, except that now the expression for 
e'(ta) contains also the term b(t6) 

(i) If tn is a collocation point (i.e., if cm = 1), then 6(t,) = 0 for all tn E ZN, 

and hence e'(tn) = O(N-(m+d)) for all mesh points ZN. 

(ii) If cm < 1, then tn ? X(HN), implying that, in general, b(t,) :A 0. It can be 
shown that in this case we only have 

b(tn) = 0(hm), tn E ZN. 

This proves the remaining assertions in Theorem 2.2. 0 

3. Computational Forms of the Collocation Method. The collocation 
equations (2.6a) contain definite integrals which, in general, will have to be com- 
puted numerically by suitable quadrature processes. In order to avoid contami- 
nation of the order of convergence of the method, the degree of precision of the 
quadrature formulas has to be sufficiently large, namely at least m + d - 1 (recall 
Theorem 2.2). Thus, a natural choice are the interpolatory quadrature formulas 
using the m abscissas based on the collocation parameters {cj}. For the integral 
over [0, cj] we have the approximation 

ci m 
Fn(tn + vhn) dv cjZwi Fn(tn +ccjlhn) (j = 1,...,m) 

(note that the kernel function k(t, a, y, z) is in general only given for s < t), while 
on [0,11 we choose 

1 ~~m 
j Fn (ti + vhi) dv ; E w1Fn(ti,1) (ti,j = ti + cthi). 

0 ~~~~~1=1 

Here, Fn(ti + vhi) (i < n) represents the respective integrand in (2.6a), and we 
have 

r1 m 
WI 101 (S - Ck)/(CI - Ck) ds. 

k=1 
k#AI 

The remaining integrals are those occurring in the delay term (2.6c). In many 
applications these integrals can be expressed in "separable" form, 

r 0 

(3.1) (Qu)(tn,j) = Z q'i(Un,j) ] Ki(tn,j si, 0(s))ds ( = 1,.. m) 
i=1 J-00 
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where the integrals of Ki (t, s, 0(s)) can be found analytically. For the particular 
kernels (1.3a) and (1.4a), the right-hand side of (3.1) is described, respectively, by 

r = 1; I' (y) = y, K, (t,s, z) = a(t - s)z; and 

r = 2; q81 (y) = y3, K, (t, s, z) =a(t -s)z-2, 

*2(Y) = -1, K2(t, si z) = a(t - s)z. 
If this is not possible, assume that (Qu)(t, j) is approximated by 

0 

(3.2) ((ll) (tn,j) := 2, blk(tnzjithUn,jiO(tl))1 
L=-M 

where M is either finite or oo, and where the points {t1} are suitable quadrature 
abscissas, with corresponding weights {b1 }. 

If the above quadrature processes are employed in (2.6a), then there results 

a fully discretized collocation method defining an element ui E 5(?)(UIN) (which, 
in general, will be different from the approximation u determined by the exact 

collocation equation (2.6a)): 

Yn.i-|(tn,ji Un,j ) + (Qut) (tn,j ) 
m m \ 

(3.3a) 
+ hnCjE wjk ctnjtn+ccjhhn Un,j, n + hn E ak(cjcl)Yn, 

n-i m 

+ E hiEwLk(tn,j,ti,L,Un,IjUi,l) (i 1,...,m), 
i=O 1=1 

with Yn := it(tn) (= n-1(tn)), yo = d)(O), and 
m 

(3.3b) Un,j :t u(tn,j) = Yr + hn *j aj,kYn,k, 
k=1 

with aj,k :ak(cj) given by (2.4). Here, (QUi)(tn}j) is given either by (3.2) or by the 

exact expression (3.1). The above method may be viewed as an m-stage implicit 

Runge-Kutta type method for the VIDE (1.la). 

Illustration. Take i E St?)(TIN) (m = 1), 0 < cl < 1, and a uniform mesh TIN 

(i.e., hn = h = TN-1 for all n). 
In this case we have (see (2.4)) 

al(v) = v, a1,, = a,(cl) = c1, w1 = a,(l) = 1, 

and hence 

Unj = Yn + hCYn,l (with Ynl := ft (tn,), tnj = tn + ch), 

and (see (2.5)) 

(3.4a) Yn+l = Yn + hYn,1. 

The value Yn,l is found by solving the single nonlinear equation ((3.3a) with m = 1) 

Yn,j 
= f(tn, 1i Uns,) + (QfL)(tn, 1) 

(3.4b) + hcl - k(tn,i,tn +c h, UnlIn + hClYn, ) 
(3.4b) ~~~n-I 

+ h E k(tnl, ti, Un i, U(i,1) 
i=0 
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(i) c1 = 1 (Radau II point). Suppose that (3.2) is given by 

0 

(Qfi)(tn,1) := h * k(tn,l i 1h,Un, 1 (1)(h)) 

(the composite (right) rectangular rule for equal subintervals of length h = TN-1). 
For this choice of cl we have tn,l = tn+l and 

Un= Yn + hYn,l = Yn+l 

Thus, replacing Yn,l by h- 1 (Yn+ -n) ) (3.4b) becomes 

h- (Yn+1 - Yn) = f (tn+l 1 Yn+l ) + (Qi) (tn+ 1) 
n 

(3.5a) + h > k(tn+l ti+l i Yn+li+l) 
i=O 

(n-=O, ...,)N -1), 

with 
0 

(3.5b) (QU)(tn+ ) = h E k(tn+l l h, Yn+l I , (1h)). 
1=-0o 

The equations (3.5a), (3.5b) represent the implicit Euler discretization for the initial 
value problem (1.5). This discretization was first introduced by Nevanlinna [13] to 
solve a VIDE arising in rheology (cf. (1.4a)); compare also [10]. Its (global and 
local) order of convergence is p = 1. 

(ii) cl = 1/2 (Gauss point). In this case we have tn,1 = tn + h2, Un,1 = Yn + hYn, 
and (3.4b) becomes 

Yn, 1 -f(tn + 2~ i Un, 1) + (Qi) (tn +_2) 

(3.6a) ~~~~+ h k (tn + h, tn + h, UJn,l, Yn + h 
fn,l ) 

n-i 

+h Ek(tn + h iti + h i n, 1 i, 1) 
i=0 

with 

(3.6b) Ynl = Yn + hYn,l. 

Let (QiU)(tn + h) be given either by 

(3.6c) (Qu) (tn + h) = h k(tn + h, (I + ')h, Un,l, q((l + t)h)) 
I=-oo 

(the composite midpoint rule), or by 

(Qu (tn +2) 

( 
) = ~h { k(tn + h, I hl On, 1 1 (/)(h)) + 2 * k(tn + hi 01 O n, 1 5 OM()) 

I=-00 

(the composite trapezoidal rule). The equations (3.6a), (3.6c) describe the midpoint 
method for the initial value problem (1.5). Under appropriate conditions on k and q 
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(see also below) the approximations generated by (3.6a), (3.6c), or by (3.6a), (3.7), 
converge quadratically at the mesh points: 

max Iy(tn) -Yn| = 0(h20) 
t,EZN 

We now return to the general method (3.3a) where the delay term is given by 
(3.2) or by (3.1). Setting t = tn + vhn (v E [0, 1]) we write (3.3a) in the analogous 
form of (2.13), 

ut (t) f (t, (t)) + (Qi) (t) -6(t) 
m 

+ hnv E wjk(t, tn + vc1hn, Ui(t), Ui(tn + vcihn)) 
1=1 

n-1 m 

+ E h1 >j, wjk(t, ti,j, ?(t), &(ti,l)) t E I, 
i=O 1=1 

with 
0 

(Qu)(t) := bjk(t,tj,u(t),O(tj)), 
1=-M 

and with a residual function 6(t) vanishing at the collocation points X(HN). If we 
replace each of the quadrature expressions by the corresponding definite integral 
minus the induced quadrature error, Ein(t) (i < n), and if we set 

(3.8) (Qiu) (t) = (Qiu) (t) -E_ (t) 

(with (Qui)(t) as in (2.2b), and with E_(t) denoting the quadrature error of the 
quadrature formula (3.2)), then we find 

u '(t ) = f (t, Iu (t )) + (Qu') (t ) -E_ (t) - S(t) 

(3.9) rt 
+ k(t, s, ut(t), u-(s)) ds- En (t), t = tn + vhn E Orni 

with E+(t) := Zin- En(t). Hence, subtracting (3.9) from (1.5a), setting e(t) 
y(t) - i2(t), and applying Lemma 2.1, we find the error equation 

)= P(t)e(t) + (t) + E_(t) + E+(t) 
t 

(3.10) + j H(t, s)e(s) ds + (4e)(t), 

t=tn+vhn(EUno O<n<N-11 

with et(O) = 0. 
The above nonlinearly perturbed VIDE (3.10) differs from (2.15) in that it con- 

tains the additional terms E_ (t) and En (t), i.e., perturbations due to the quadra- 
ture approximations used in the discretization process for (2.6a) and (2.6c). Thus, 
the application of Lemma 2.2 to (3.10) yields 

t ,t 
6(t) = f R(t, s)6(s) ds + f R(t, s)(W')(s) ds 

(3.11) J 

+ R(t, s)(E_(s) + E+(s)) ds, t e I, 

where E+ (t) = E (t) for t E an 
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THEOREM 3. 1. Let the assumptions of Theorem 2.2 hold, and assume that the 
delay term (Qfu)(t) (cf. (2.2b)) can be evaluated analytically (i.e., in (3.8) we have 
E_(t) = 0 for all t e I). Then the estimates (2.10), (2.11) of Theorem 2.2 and the 

assertions of Corollary 2.1 hold also for the collocation approximation es E Sm() (RIN) 

defined by the discretized collocation method (3.3a). 

Proof. Since E_ (t) = 0 for all t E I, it can be shown that any choice of the 
collocation parameters {c; } leads to the global convergence result leO = O(N-m) 
(cf. Theorem 2.1). This is a consequence of the fact that any m-point interpolatory 
quadrature rule has degree of precision greater than, or equal to, m - 1. Moreover, 
if the orthogonality conditions (2.9) are satisfied for k = 0,... , d - 1, then the 
quadrature formulas in (3.3a) all have the degree of precision m + d - 1, i.e., the 
resulting quadrature errors Ein(t) (0 < i < n < N - 1) are O(N-(m+d)) for all 
sufficiently smooth integrands. The arguments used in the proof of Theorem 2.2 can 
then be applied to the expression (3.11) for the error e(t), setting t = tn E ZN. 0 

If the delay term (Qui)(t) cannot be evaluated analytically, then it follows from 
(3.11) and the arguments introduced in the proof of Theorem 2.2 that the order of 
the error e(t) at the mesh points ZN is given by 

max Iy(tn) - is(tn)j = O(N-(m+d)) + O(IIE_ llo). 
tn EZN 

Here, the size of the bound for IIE- lloo depends on the behavior of the integrand 
on (-oo,0]. If this integrand, k(t,s,u(t),q$(s)), is zero for -oo < s < -To and 
t E I, for some To > 0, then we can attain IIE_ Iloo = O(N-(m+d)) by using instead 
of (3.2) m-point interpolatory quadrature formulas (over subintervals of length h) 
whose abscissas are based on the collocation parameters {cj }. 

In the general case, it is possible to obtain IIE_ Iloo = O(hq), with q > m + d, by 
means of the composite trapezoidal rule (see also (3.7)), 

-1A 

(Quf)(t) h { E k(t, Ih, ui(t), q(lh)) + 2 k(t, 0, ui(t), k(0)) } 

I=-00 

provided the integrand, H(s) := k(, ,s, fz(.), X(s)), possesses odd-order derivatives 
up to order 2r - 1 which vanish at 0 and -oo: H(2j-1)(0) = H(2j-1)(-oo) = 

0, j = 1,.. , r. It is known (see, e.g., [6, pp. 208-210]) that we then have 

IIE l/oo < Ch2r'' for some finite constant C. Hence, if r is such that 2r + 1 
at least matches m + d - 1, the degree of precision of the m-point quadrature for- 
mulas based on the {cj}, then 6(tn) = O(N-(m+d)) on the mesh 11N. (Similar 

results hold for the composite midpoint rule.) While in practical applications the 
condition H(2j-1)(_(c) = 0, j = 1, ... , r, is usually satisfied, this is generally not 
true at t = 0. In this case one will resort to the composite trapezoidal rule with end 
corrections at t = 0, given by appropriate terms in the Euler-Maclaurin summation 
formula. Compare also [6, pp. 210-211] for other modifications of the trapezoidal 
rule. 

4. Application: Volterra's Population Equation. In the case of Volterra's 
population equation, 

yt 
y'(t) = F(y(t)) + / a(t - s)y(t)y(s) ds, t E I, 
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where 
Y(t) = q(t), -oo < t < O0 

and 
F(y) = (ao - aly)y (ao > 0, a1 > 0), 

the discretized collocation method (3.3a) (defining an approximation fU E Sm) (-IN)) 

assumes the form 

Ynj= F(Unsj) + (Qi)(tn,j) 
m m\ 

+ Un,j hncj wia(hncj(1 -cI)) + hn E ak(CjCl)Yn,k) 

(4. 1a) = k=l 
n-1 m ) 

+ E hi E wja(tn,j ti,I)Ui, I 
i=O 1=1 

(=1,...,Im), 

with 
0 

(4.lb) (Qi)(tns,) = Un,j f a(tn,- s)k(s) ds, 

and 
m 

(4.1c) Unj= Yn + hn E aj,kyn,k 
k=1 

Here, 

aj,k = ak (cj) = J7J(V - Cl)/(Ck - cl) dv 

1=1 
l#k 

(cf. (2.4)). Once the solution of the nonlinear algebraic system (4.1a) is known, the 
collocation approximation ui on the subinterval O,n is given by 

m 

Uf(tn + vhn) = Yn + hn * E ak(v)Yn,k; 
k=1 

in particular, we obtain 
m 

(4.1d) Yn+ 1 = f(tn + hn) = Yn + hn j WkYn,k (with Wk = ak(1)), 
k=1 

where O =() 
As mentioned in Section 1, many models of population growth employ delay 

kernels reflecting the presence of some instantaneous effect on growth rate response, 
with delayed maximum effect, i.e., 

a(t) = -_(yob-1 + -Ylb-2t) exp(-t/b), 

with -yo + -y = 1, -yl > -yo > 0, b > 0. This function a(t) attains its maximum 
at t = b(- yo)/-yl, and we have f? la(t)l dt = 1. Hence, the integrals in (4.1b) 
can usually be calculated analytically, and the order of convergence of the approxi- 
mations Y defined by the discretized collocation method (4.1a)-(4.1d) is therefore 
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described by Theorem 3.1 and Corollary 2.1 (with ui replacing u). In the following 
numerical illustration the values of the above parameters were chosen as 

-to = 0.05, yl = 0.95, b = 1.0; ao = 14.0, a, = 1.1; 

the initial function is k(t) = exp(-y2t), with 12 = 0.5. The corresponding solution 
y(t) rises from 1.0 at t = 0 to about 11.7 near t = 0.5 and then tends to the 
asymptotic value y(oo) = 20/3 (cf. Theorem 1.1). The approximating spline space 
is S(?)J(IN) (i.e., m = 2), and the collocation parameters are the Gauss points 
(c1 = (3 - V3-)/6, c2 = (3 + V3/)/6) and the Radau II points (cl = 1/3, C2 = 1). 
The integral in (4.1b) was calculated analytically. The numerical results contained 
in Table 4.1 reveal that collocation at the Gauss points leads to a somewhat faster 
convergence rate than collocation at the Radau II points. However, as indicated in 
Corollary 2.1, the latter furnishes better convergence of the values approximating 
y'(t) with t = tn E ZN. The computations were carried out in double precision on 
a VAX 8800. 

TABLE 4. 1 

tn N Gauss points: Radau II points: 

(T = 4.0) (h = T/N) U(tn) I s(tn) u(tn) |U'(tn) 

0.3 40 10.1438 22.1377 10.1324 21.7513 

80 10.1453 21.5796 10.1434 21.6455 

160 10.1454 21.5986 10.1451 21.6285 

0.5 40 11.6710 - 0.58348 11.6807 - 0.11591 

80 11.6724 -0.12895 11.6736 - 0.03755 

160 11.6725 - 0.04816 11.6726 - 0.02752 

1.0 40 10.3564 - 3.34695 10.3577 - 3.34136 

80 10.3561 - 3.34099 10.3563 - 3.33961 

160 10.3561 - 3.33972 10.3561 - 3.33937 

2.0 40 7.56846 - 1.90745 7.56904 - 1.90831 

80 7.56826 - 1.90745 7.56838 - 1.90764 

160 7.56825 - 1.90749 7.56827 - 1.90753 

4.0 40 6.45791 0.13490 6.45789 0.13445 

80 6.45793 0.13453 6.45792 0.13441 

160 6.45793 0.13441 6.45793 0.13441 

5. Concluding Remarks. If the VIDE (1.la) is of the form 
(t 

(5.1) p Iy'(t)=f (t, y(t))+ / k(t, s, y(t), y(s)) ds, t EII 
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with 0 < u <? 1, then it may be regarded as a singular perturbation of the equation 

rt 
0 = f(t, y(t)) + k(t, s, y(t), y(s)) ds, 

where y(t) = +(t) on (-oo,0]. Particular cases of (5.1) were analyzed in [9], [8] 
(with f(t,y) 0), and in [10] (with f(t,y) = g(t)yc, 0 < Oe < 3); the kernel 
function k(t, s, y, z) was the one given in (1.4a). In [13], [10] the numerical scheme 
(3.5a), (3.5b) (implicit Euler discretization) was used to generate numerical ap- 
proximations to the solution of this VIDE, and it is conjectured in the second of 
these papers that higher-order Radau II discretizations will also successfully simu- 
late the exponential decay of the solution of (5.1) (uniformly as , -u 0). Although 
the stability analysis of the collocation method (2.6) and its discretized counterpart 
(3.3) is an open problem, the result (2.11) and part (b) of Corollary 2.1 provide a 
first indication on why (discretized) collocation based on the Radau II points will 
be superior to collocation using the Gauss points when solving problems like (5.1): 
it yields "balanced" (same order) approximations to y(t) and to its slope at the 
mesh points. 

In this paper the given VIDE is considered on some compact interval I = [0, T]. 
In view of asymptotic results like the one mentioned in Theorem 1.1, it would be of 
interest to analyze the asymptotic properties of the spline collocation approximation 
u on [0, oo) for a fixed stepsize h > 0 and to derive, e.g., bounds for Iy(tn) - u(tn)I 
as n -- oo, with tn = nh and h > 0 fixed. As in [13] and [10], where this was 
investigated for implicit Euler type methods, such an analysis will have to show 
that, at least for certain judicious choices of the collocation parameters {cj }, the 
collocation approximation u E S(n)(IIN) preserves the qualitative properties of 
the exact solution y of the given VIDE. We shall pursue this challenging problem 
elsewhere. 
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